Not Your Typical Turbo Blower

New Holstein Utilities' Blower Improvements

Don Lintner (NHU)

Eric Lynne (Donohue)

- New Holstein Utilities
 - Population (~3200)
 - Design
 - Flow (1.33 mgd)
 - Load (1600 ppd BOD)
 - Current
 - Flow (0.5 mgd)
 - Load (680 ppd BOD)

- Permit Requirements
 - ▶ BOD (20/30 mg/L)
 - TSS (20/30 mg/L)
 - TP (1.0 mg/L)
 - No disinfection
- Operational Practices
 - Extended Air (Nitrification)
 - Septage Receiving (Slugs)

- Aeration Blowers
 - ► Type Rotary Lobe
 - Function Aeration and Digester
 - Condition End of Useful Life
 - Reliability Concerns
 - Inefficient

Typically run 70 / 100 HP for 1600 scfm / 2300 scfm (mixing limited)

Facilities Plan

- Blower Replacement
- Ancillary Systems
 - Building
 - Decant Tanks
 - WAS Control
 - Sludge Pumps
 - Standby Generator
 - DO Control
 - Lab Temperature
 - Workshop/Garage Bay

Facilities Plan

- Blower Replacement Alternatives
 - Replace In-Kind Rotary Lobe Blowers
 - Single Stage Centrifugal (Turbo) Blowers
- Efficiency
 - Life Cycle Cost Evaluation
- Upgrade Electrical Service
 - > 230V vs. 480V Power

Recommended Further Consideration

Facilities Plan / Preliminary Desigr

- Single Stage Centrifugal Blowers
 - High Speed Turbo (Sulzer/APG-Neuros)
 - Specialized Electronics
 - Cost
 - Integrally Geared with Sliding Vane (Turblex)
 - High Capacity / Cost
 - Integrally Geared with VFD (Inovair)
 - New

Design Concepts

Design:

- A. Evaluated Blower Bid
- B. D.O. Control
- c. Modulating Valve
- D. 3-D Model

A) Blower Evaluation

B) Dissolved Oxygen Control

C) Modulating Digester Valve

D) 3-D Models

- Design:
 - 3-D Model
 - Pump Gallery Operator Input allowed ability to pull/push flow every direction

Funding

BIDS

Low Bidder:

> \$2,149,000

GRANTS

Aeration Blower:

Projected Energy Savings (\$16,500)

Building Heat:

Electric Heat \rightarrow Gas Heat Savings (\$7,500)

Grant Value

- \$ 33,976 WPPI
- \$ 68,165 Focus on Energy
- \$364,382 CWF Principal Forgiveness

\$466,523 Total (22%) > \$1,682,477 (net cost)

(No trees were harmed on this portion of the project)

Valved Flexibility

- Design:
 - Eliminated 1 pump
 - Some flowpaths can flow by gravity or pump
 - Rotary lobe pumps allow multi-use
 - All three can really move some sludge
 - Sacrificed Automation

Startup Plan

- How to sequence blower demo/startup to prove new units are fully functional?
 - (....Very Carefully)

- The Blowers Work!*
 - Designed to typically need 2 blowers
- Now to Optimize
 - Reduce DO
 - Reduce Mixing Limited
 - Reduce Digester Airflow
 - Limitations:
 - Blower Turndown (Range 70-100%)
 - Inovair now offers wider-range units, consider varying sizes (or rpms?)

	<u>Starts</u>						
	This Hour	Today	Yesterday	This Month	Tota		
Blower 1	1	57	39	118	19		
Blower 2	2	60	37	122	168		
Blower 3	2	58	36	114	193		
Blower 4	0	۰ ۲	2	5	47		
Sludge Pump 1	0	6	0	0	4		
Sludge Pump 2	0	0	Ø	Ō	4		
Sludge Pump 3	0	0	11	38	142		
	To be all a second						
Control		121111					

- Blower PLC Programming
 - Surge Protection Feature
 - Manual reset
 - Head rise to surge worse at VFDmin
 - Ramps up VFD, fights valve PID

- Blower PLC Programming
 - Mass Airflow Winter Operation
 - Adjusted PLC Temp Setting

- Current
 - Operating smooth now
 - Maintenance Items:
 - Expensive Oil
 - Belt Tensioning
 - ► Air Filter
 - Observed Energy Savings
 - Average
 - Peak

Benchmarking

See Focus at Booth #136

Download Guide @

www.focusonenergy.com/guidebooks

Table 4Best Practice Benchmarks and Top Performance Quartiles for Wisconsin Wastewater Facilities							
Facility Type	Flow Range (MGD)	Average Energy Use (kWh/MG)	Top Performance Quartile (kWh/MG)	Best Practice Benchmark (kWh/MG)	Average Potential Savings		
Activated Sludge**	0 -1	5,440	< 3,280	3,060	44%		
	1-5	2,503	< 1,510	1,650	34%		
	> 5	2,288	< 1,350	1,760	23%		
Aerated Lagoon	< 1	7,288	< 4,000	3,540	51%		
Oxidation Ditch	< 1.2	6,895	< 4,000	4,320	37%		

ENERGY BEST PRACTICES GUIDE: WATER & WASTEWATER INDUSTRY

Benchmarking

Heating Improvements

Cost:

- ▶ \$40,000
- Benefit:
 - Reduced OPEX
 - Lab temp control
- 2-10 year payback without grants
- Demand charge reductions

Normalize for BOD

Minimized Electric Heat

(some areas still have electric heat)

Summary

- More than Just a Blower Replacement Project
 - Blowers
 - Continued Optimization
 - Control System
 - Heating System

- Come Visit!